Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(3): e0021122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35502902

RESUMO

The invasion ecology principles illustrated in many ecosystems have not yet been explored in the context of fomite transmission. We hypothesized that invaders in fomite transmission are trackable, are neutrally distributed between hands and environmental surfaces, and exhibit a proximity effect. To test this hypothesis, a surrogate invader, Lactobacillus delbrueckii subsp. bulgaricus, was spread by a root carrier in an office housing more than 20 participants undertaking normal activities, and the microbiotas on skin and environmental surfaces were analyzed before and after invasion. First, we found that the invader was trackable. Its identity and emission source could be determined using microbial-interaction networks, and the root carrier could be identified using a rank analysis. Without prior information, L. bulgaricus could be identified as the invader emitted from a source that exclusively contained the invader, and the probable root carrier could be located. In addition to the single-taxon invasion by L. bulgaricus, multiple-taxon invasion was observed, as genera from sputum/saliva exhibited co-occurrence relationships on skin and environmental surfaces. Second, the invader had a below-neutral distribution in a neutral community model, suggesting that hands accrued heavier invader contamination than environmental surfaces. Third, a proximity effect was observed on a surface touch network. Invader contamination on surfaces decreased with increasing geodesic distance from the hands of the carrier, indicating that the carrier's touching behaviors were the main driver of fomite transmission. Taken together, these results demonstrate the invasion ecology principles in fomite transmission and provide a general basis for the management of ecological fomite transmission. IMPORTANCE Fomite transmission contributes to the spread of many infectious diseases. However, pathogens in fomite transmission typically are either investigated individually without considering the context of native microbiotas or investigated in a nondiscriminatory way from the dispersal of microbiotas. In this study, we adopted an invasion ecology framework in which we considered pathogens as invaders, the surface environment as an ecosystem, and human behaviors as the driver of microbial dispersal. With this approach, we assessed the ability of quantitative ecological theories to track and forecast pathogen movements in fomite transmission. By uncovering the relationships between the invader and native microbiotas and between human behaviors and invader/microbiota dispersal, we demonstrated that fomite transmission follows idiosyncratic invasion ecology principles. Our findings suggest that attempts to manage fomite transmission for public health purposes should focus on the microbial communities and anthropogenic factors involved, in addition to the pathogens.


Assuntos
Fômites , Microbiota , Humanos , Espécies Introduzidas , Mãos
2.
J Hazard Mater ; 416: 126137, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492926

RESUMO

Fomites are known to spread infectious diseases, but their role in determining transmission risk remains unclear. The association of surface touch networks (STNs), proposed to explain this risk, with real-life surface contamination has not yet been demonstrated. To construct STNs, we collected surface touch data from 23 to 26 scholars through 2 independent experiments conducted in office spaces for 13 h each. In parallel, a tracer bacterium (Lactobacillus bulgaricus) was spread by a designated carrier in each experiment during normal activities; the subsequent extent of surface contamination was assessed using qPCR. The touch data were also analyzed using an agent-based model that predicted the observed contamination. Touching public (door handles) and hidden public (desks, chair seatbacks) surfaces that connected occupants, sparse hand-to-hand contact, and active carriers contributed significantly to contamination spread, which was also correlated with the size of the social group containing carriers. The natural and unsupervised experiments reflected realistic exposure levels of mouths (1-10 ppm of total contamination spread by one root carrier), nostrils (~1 ppm), and eyes (~0.1 ppm). We conclude that the contamination degree of known and hidden public surfaces can indicate fomite exposure risk. The social group effect could trigger superspreading events through fomite transmission.


Assuntos
Fômites , Tato , Mãos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...